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Accurate and Efficient Continuous Collision
Detection
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Abstract—With continuous-collision-detection (or C.C.D.), in-
stead of evaluating a scene statically (at certain moments in time),
a scene is continuously evaluated (over a time interval). In this
paper, a C.C.D. method is proposed based on feature-testing.
Examples of features are points, edges and polygons. If we can
test points and polygons, and edges and edges, we can perform
C.C.D. on any polyhedral shape.

Our method does not compromise on motion accuracy, instead
our method delivers first-order-accuracy instead of zeroth-order-
accuracy, which is the accuracy achieved by many other C.C.D.
methods. We call our method D2M or differentiate-twice-method.

The constructs in this paper can be used for brute-force C.C.D.
. For instance if someone would like to collide two polygons, or
two cubes for instance. We will also show how to use a bounding-
volume-hierarchy or BVH in combination with our method. By
using this BVH, we can collide model-pairs in the order of 1
million triangles.

Index Terms—IEEEtran, journal, paper, continuous-collision-
detection, feature-testing, bounding-volume-hierarchy.

I. INTRODUCTION

Whenever a rigid-body simulation needs to be performed,
such a simulation is usually accompanied by a discrete-
time-collision-detection-system. Questions like; are two bod-
ies intersecting? and where/how are the bodies penetrating
each-other?, are both answered by the discrete-time sys-
tem. With continuous-collision-detection (C.C.D.), any object
is persistent in space while traveling and objects are not
allowed to deform. In [13], this is referred to as truly-
continuous-collision-detection. In general we are allowed to
speak of truly-continuous-motion as motion is obtained by
rigid-transformation. For a single object, it is possible to define
a beginning state and an end state. The infinite amount of
intermediate states are to be defined by the C.C.D. system.

Continuous-collision-detection is somewhat more difficult
than discrete-time collision detection. Note that collision de-
tection is clearly separated from collision response. Whereas
the problem of collision detection is clearly postulated, this
does not seem to be the case for collision response. Newton’s
impact law might lead to a unique solution for two colliding
spheres. It is unclear how to apply this law to two colliding
bunnies.

With C.C.D. the term TOC arises, TOC meaning Time of
Contact. It is used to designate the first moment in time when
generally only two objects are touching. When we restrict
ourselves to two objects, this does not limit the concept to
being used in a scene with just two objects. When many
objects collide simultaneously, this can be re-factored in many
two-body TOC queries. The number of two-body TOC-

queries goes up quadratically as the number of simultaneously
colliding objects increases.

Let D ∈ P(R3), stated differently let D be a point-set
describing the externals and internals of an object. Now let
D(t) be D under some rigid transformation which is time
(t) dependent. Likewise, let A(t) and B(t) both be time-
dependent rigid-transformations of point-sets.

Static (discrete-time-) collision detection can be posed as:
mint∈N (collideStatic(t)) ,
where collideStatic(t) = (A(t) ∩B(t) ̸= ∅).

Likewise, continuous collision detection can be posed as:
mint∈{0}∪R+ (collideStatic(t))

Both definitions above assume that there is a moment of
contact (TOC). The latter need not be the case because the
possibility exists that there is no contact. In this case, the
algorithm will return a positive infinite value. Within any
practical application of C.C.D, the domain will be bounded
instead of being {0}∪R+. Multiple authors bound the domain
to [0, 1].

In [16], an alternate definition is used, considering one
moving and one static object. This setup seems to be used
for explanatory reasons. It must be noted that this explanation
oversimplifies the problem. Without increasing the motion-
complexity of the non-static object, two objects under rigid
transformation cannot always be simplified to one moving and
one static object, by merely changing the frame-of-reference.

The subclass of rigid transformation motions that is used
we call: Linear translational and linear rotational motion.
Intuitively this means that the centroid of an object is moving
with linear motion. The object is simultaneously rotating
around a fixed axis with a fixed angular-velocity.

This paper contributes to C.C.D. in the following ways:
• Quick, robust and highly accurate feature/feature tests:

– Vertex/triangle
– Edge/edge

• A new bounding-volume-hierarchy is introduced
• Two modes of operation of D2M

– D2M (with Raw Continuous Collision Detection)
designated with D2M

– D2M (without Raw Continuous Collision Detection),
just broad-phase, designated with D2M Capoeira
(see Figures 1 and 4)

• Our accurate method (D2M) is very tight [1, 3.3] · 10−10

units separation distance
• The accuracy of D2M exceeds the accuracy of C2A (a

competing system) by a big factor
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Fig. 1: Sphere hierarchy with different epsilon levels. Within
the benchmarks of this paper we use ϵ = 1

32

• Computational efficiency of D2M (Capoeira) rivals/ex-
ceeds the computational efficiency of C2A

• Able to do rigid-body simulation with C.C.D. and colli-
sion response (including a basic type of friction [2])

• Can be extended with any C2 continuous rigid-motion
In Section II, we refer to the works of others that are somehow
related to this work. Section III, defines the criteria for the con-
tinuous in-between motion that can be used. Section IV deals
with finding the first root of some arbitrary feature/feature
test. In Section V, we describe what to do in order to assure
disjointness after a collision. Section VI, provides a few hints
on how to make the overall system perform faster. Section VII
opens some room for discussion. Afterwards, in Section VIII,
the testing results of D2M/D2M Capoeira, are compared to
C2A. In Section IX, this paper is concluded. February 3,
2017

II. RELATED WORK

Work has been done by Redon et al. [3]. to solve the C.C.D.
problem in a neat way. Yet similar work was done in 1984 by
Canny [1]. In the latter two papers, the problem is solved
using complicated algebra. Both papers use a specific motion
type, and both motion classes are subclasses of rigid motion.
The motion class in this paper has preference over the other
motion types. This motion type is comprehensible: “rotating
with constant angular velocity while translating with constant
velocity”. The motion type used within this paper, can be
regarded as natural. Instead of imagining a path in-between, a
continuous path is chosen that is identical to the path obtained
by an Euler integration step (by using a specific interpretation
of Euler integration).

A while back in time, Mirtich [10], introduced the concept
of conservative advancement, a technique for TOC querying

on convex objects. Typically, conservative advancement relies
on closest-point-pair queries. Such queries may be facilitated
by e.g. the Lin-Canny- / Gilbert-Johnson-Keerthi- algorithm.

In general, objects are not convex. The latter is one reason
why Min Tang et al. [16] devised the system “Controlled
Conservative Advancement” or C2A. Within this system a
proximity query library is used called PQP, which has been
devised by Eric Larsen and Stefan Gottschalk. Next to sup-
porting C2A, PQP also plays a crucial role in validating the
results of the system presented in this paper.

In order to compare the performance of the system corre-
sponding to this thesis, a state of the art competing method
was chosen, namely C2A. Instead of relying on convex
decomposition of generic polyhedral models (like C2A does),
our system relies on primitive / primitive TOC queries, in
combination with some hierarchical techniques.

A. Root-Finding

When a root cannot be found analytically or is sufficiently
hard to find analytically, one often chooses a standard nu-
merical method to begin with. One can choose a regula-
falsi method if one is able to pinpoint two points a, b ∈ R
such that sign(f(a)) = −sign(f(b)) and a ̸= b. If one
chooses this specific method, one can find the roots of fairly
complicated functions. However, the user of this function, is
still responsible for pinpointing a unique root within a certain
domain.

In [6], a method as sketched above is used. The reason why
such a method is not used within the context of this paper, is
because it is particularly hard to pinpoint a domain in which
the root has to occur. This argument holds for a lot of root-
finders, they seem to be quite capable of finding a root within
a given domain. Other root finders, like Newton-Raphson /
the Householder’s methods method are not guaranteed to find
exceptional roots.

A few traits were important before our root-finder was
devised:

• Robustness
• Absolute running time

Interval-arithmetic, as described in [14], seems to be obvious
choice when one can spare the processing cycli. We have
chosen to use a second-order inclusion-function which can
also be called a “second-order Taylor-form” [15].

In [9] a lot is written about Taylor-models. A Taylor-model
is a vertically thickened polynomial. Our inclusion-function
is not a Taylor-model, as can be seen in Figure 2. Note
that the upper and lower bounding parabolas are diverging.
With Taylor-models, the vertical distance would be constant.
Choosing the parabolas to be divergent, makes it a lot more
difficult to apply basic arithmetic on the models, like is done
in [19]. E.g. computing the product of two of such models
would be a difficult task.

B. Bounding-Volume-Hierarchies

The concept of a Bounding Volume Hierarchy is required
in order to get a decent processing rate. The main idea is:



JOURNAL OF *****, VOL. ***, NO. **, JUNE 2010 3

t

f(t)

Fig. 2: Operation of the root finder. Inclusion-functions are
shown in purple.

“Do not test what does not need to be tested.”. We can draw a
sphere around a very complicated object (A). If object B does
not hit the sphere, there is no need to intersect with A. This
idea can be exploited recursively, in order to get acceptable
collision query times.

In [7], oriented bounding boxes are the basic building blocks
of a Bounding Volume Hierarchy. The complexities involved
with oriented bounding boxes, are in a different class than
spheres and axis-aligned bounding boxes. In [18], van den
Bergen measures that axis-aligned bounding-boxes cause more
inner primitive tests than oriented bounding-boxes. This is
because oriented bounding boxes, give a better fit. The latter
seems to be of great importance.

Within the context of this paper, a sphere hierarchy is
used. A property of these spheres is that they are smallest
enclosing spheres. When dealing with hierarchies, it may be
tempting to simply unite two spheres at the same level into
a bigger, enclosing sphere at the parent-level. This strategy
will result in a big sphere around the object in question,
which is not what we prefer. In order to get an optimal
hierarchy, the raw geometry at a certain level has to be fed to
the minimal-enclosing-sphere-constructor-function. A sphere
hierarchy associated with this project is constructed after a
hierarchy of axis-aligned bounding-boxes or R-tree has been
constructed. A lot is stated on R-trees in [8]. Results of [8]
have been used within this paper. For instance, due to [8] we
have chosen the number of children within the R-tree to be 2
at each inner-node, thereby excluding octree-like constructs.

III. MOTION

The rigid in-between motion can conveniently be defined
by a time-dependent 4 × 4 homogeneous matrix: M(t) =

(
R(t) x(t)

(0, 0, 0) 1

)
Where x(t) is the translational displace-

ment, and R(t) is a right-handed orthonormal 3 × 3 matrix.
Alternatively one can use a time-dependent pair of a quater-
nion and a 3-vector. What is important is that the definition
is explicit. We either have a mapping from time to R4×4,
or a mapping from time to quaternion and 3-vector. When
the motion mapping has been established, it needs to be
“promoted” to interval-arithmetic. This way it is possible to
see what happens in time-ranges instead at moments in time.
In order to create these interval-mappings, one most-likely
requires interval to interval-functions such as sin : IR 7→ IR,
where IR denotes the set of intervals.

IV. COMPUTING TOC FOR FEATURE/FEATURE TESTS

It is very difficult to solve the continuous-collision-detection
problem as a whole. Thankfully, the problem permits itself
to be subdivided. Let the problem in its bare form be TOC
determination. It is enough to be able to determine the TOC
between two moving features e.g. a vertex and a convex
polygon. This TOC computation together with edge/edge TOC
determination, is sufficient to compute the TOC between two
non-convex bodies under some rigid motion.

Whether it concerns point/polygon tests or edge/edge tests,
we require a root finder that finds the first root of a complicated
function. Also, while searching for roots we would like to
exclude parts of the search domain that cannot produce a
viable solution. The function f : R 7→ R is required to be in
continuity-class C0 for Algorithm 1 and in continuity-class C2
for Algorithm 3.

The definition of f may be very complicated. We can
think of f as a distance function. The distance between two
features for instance. Whenever the distance reaches 0, there
is a collision. Preferably this distance function can also be
negative.

First let us start with the plain interval-arithmetic version
of the solver. See Algorithm 1.

Algorithm: BBOI

input : An interval function: f : IR 7→ IR
A boolean function: Γ : IR 7→ B
A domain in which to search: [t0, t1] ∈ IR
A time based epsilon value: ϵt ∈ R

output: A root is (possibly) declared [r0, r1] ∈ IR ∪ ∅
1 if Γ ([t0, t1]) ∧ (0 ∈ f([t0, t1])) then
2 if t1 − t0 ≤ ϵt then return [t0, t1];
3 middle← t0+t1

2 ;
4 root← BBIO(f,Γ, [t0,middle], ϵt);
5 if root ̸= ∅ then return root;
6 return BBOI (f,Γ, [middle, t1], ϵt);
7 return ∅;
Algorithm 1: Binary-Bisection-On-Intervals, a recursive
algorithm that can be used to find roots with arbitrary
precision (see ϵt). Note that the algorithm does not account
for floating point issues. E.g. t0+t1

2 could evaluate to t0.

The observant reader may have noticed the Γ function. This
function can be used to efficiently validate the output. If the
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input of the Γ function could contain a valid root (i.e. an
intersection), then the function must return true . Each root
of f does not imply the presence of an intersection. It is much
easier to simplify the “distance” function f such that it may
report false roots. The false roots are later rejected by our
boolean function Γ.

For instance, formulating a positive distance-function be-
tween a polygon and a vertex is not only quite hard, the root-
finding process is also likely to be less robust.

Within the context of this project, we basically compute
collisions of vertices and planes and prune the ones that do
not hit our specified polygon. Thanks to our function Γ, the
latter two processes can be done simultaneously.

A. Accelerating root-finding

We can accelerate the computation of roots, by using some
derived features of f , let us say, the the value of function
f evaluated over a time-domain: [f0, f1] (using interval-
arithmetic), the time-derivative of f , f ′ and the second time-
derivative of f evaluated over a time-domain [f ′′

0 , f
′′
1 ] (using

interval-arithmetic).

Algorithm: HRFOI

input : A real function: f : R 7→ R
An interval function (promoted): f : IR 7→ IR
Its time derivative f ′ : R 7→ R
The second time derivative f ′′ : IR 7→ IR
A boolean function: Γ : IR 7→ B
A domain in which to search: [t0, t1] ∈ IR
A time based epsilon value: ϵt ∈ R

output: A root is (possibly) declared [r0, r1] ∈ IR ∪ ∅
1 if ¬Γ ([t0, t1]) ∨ 0 /∈ f([t0, t1]) then return ∅;
2 g ← f(t0) ;
3 g′ ← f ′(t0) ;
4 [g′′0 , g

′′
1 ]← f ′′([t0, t1]) ;

5 I ← θ(g, g′,
[g′′

0 ,g′′
1 ]

2 , [t0, t1]) ;
6 [h0, h1]← IRD(I, [t0, t1]);
7 if h = ∅ then return ∅;
8 if h1 − h0 ≤ ϵt then
9 if Γ ([h0, h1]) then return [h0, h1];

10 return ∅;
11 middle← h0+h1

2 ;
12 root← HRFOI (f, f ′, f ′′,Γ, [h0,middle], ϵt) ;
13 if root ̸= ∅ then return root;
14 return HRFOI (f, f ′, f ′′,Γ, [middle, h1], ϵt) ;

Algorithm 2: Hybrid-Root-Finder-On-Intervals.

The inclusion-function is characterized by ax2 + bx + c,
where a ∈ IR and b, c ∈ R. The extremes of a define the
upper-/lower-parabola.

θ(f, f ′, [f ′′
0 , f

′′
1 ], [t0, t1]) =

[f + f ′x+ 1
2f

′′
0 x

2, f + f ′x+ 1
2f

′′
1 x

2].

Where x = t − t0, and t represents time (see Figure 2).
Note that θ0 ≤ θ1. Function computeFirstUpperRoot :
IR 7→ R ∪ ∞, computes the first root of the upper-parabola
of an inclusion-function within the given domain. Likewise
computeFirstLowerRoot : IR 7→ R ∪ ∞, computes the first

Algorithm: IRD

input : An inclusion function: I
A domain which to shorten: [t0, t1] ∈ IR

output: The shortened search domain (optional)
[r0, r1] ∈ IR ∪ ∅

1 if I(t0) < 0 then I ← −I;
2 l← I.computeFirstLowerRoot([t0, t1]);
3 if l /∈ R then return ∅;
4 u← I.computeFirstUpperRoot([t0, t1]);
5 if u /∈ R then return [l, t1];
6 return [l, u]
Algorithm 3: Intersect-Root-Domain. This function will
compute the root-domain, and intersect it with the given
domain.

root of the lower-parabola of an inclusion function within the
given domain. If no such root exists, both functions yield ∞.

If the second-derivative interval of inclusion function I is
[0, 0], then the inclusion function represents a line. The slope
of the inclusion function can be 0 too. In case of a horizontal
line, it could be the case that the interception of the line is
also 0, in which case we have infinitely many roots to declare.
This singularity is dealt with by simply discarding horizontal
line-segments. For the primitive-primitive tests done within
this paper, discarding horizontal-line segments is the proper
action.

B. Point / Triangle test

Up until now, we have used the term convex-polygon instead
of triangle. Using triangles instead of convex-polygons within
computational-geometry has the advantage that a triangle is
only invalid when two vertices are equal. When using convex-
polygons, one is troubled with checking whether the polygons
are really flat and convex.

We will ask ourselves the question: “Will a point following
a particular trajectory, collide with a moving triangle and when
will this event occur?”. In Section III, we already described
the type of motion. So both the vertex and the triangle have
to adhere to such a motion type i.e. rigid-motion. There are
two objects, object A and object B, each having a well
defined rigid transformation dependent on time A(t) and B(t)
respectively. The point a is static in the local space of object
A, and is transformed by A(t) to form a(t) in world-space.
The points b and c are static in the local space of B and
transformed by B(t) to form b(t) and c(t) in world-space.
Let b be a point on our polygon. The polygon has a normal
n̂, which is defined to be c− b. In world-space, let us define
n̂(t) = c(t)−b(t). Let us also define γ(t) = a(t)−b(t). Now
we can define a function that happens to be the signed-distance
of point a(t) to the plane supporting our polygon:

f(t) = γ(t) · n̂(t).
Recall that our accelerated root finder required not only f , but
f , f ′ and f ′′. The first and second analytical time-derivatives
of a point undergoing linear translational and linear rotational
motion are given in Appendix A. The time-derivatives of f(t)
are derived in Appendix D.
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Algorithm: ΓPT

input : A vertex: a ∈ IR3 defined in B-space.
A triangle: Ti ∈ R3, where i ∈ {1, 2, 3}

defined in B-space.
output: A boolean indicating whether an intersection

could occur.
1 M←(

T2 − T1 T3 − T1 (T2 − T1)× (T3 − T1)
)−1

;
2 x←M(a− T1);
3 if xx,1 < 0 ∨ xy,1 < 0 ∨ xx,0 + xy,0 > 1 then
4 return false ;
5 return true ;
Algorithm 4: Γ-Point-Triangle. Before using this algo-
rithm, the point a must be converted to B-space. Because
the gamma function is given a time-span instead of a time-
moment, a becomes a 3D-spatial interval. This function
preforms a 2D-barycentric triangle test. The matrix com-
putation at line 1 has to be done once for each triangle,
and can thus be optimized away. Because the third term of
x, xz is not used, the vector/matrix multiplication in line
2 can be replaced with two dot products.

Note that instead of 4×4 matrices, 3-vector/quaternion pairs
are preferred in order to represent a transformation. The latter
makes the math more complicated but will result in better
computational performance.

C. Edge / Edge test

Let a and b be transformed into world-space by A(t) into
a(t) and b(t). In a similar way, let c and d be transformed
into world-space by B(t) into c(t) and d(t). Next, let δ1(t) be
defined as b(t)−a(t), and let δ2(t) be defined as d(t)−c(t).
Next, let n(t) = δ1(t) × δ2(t) be the direction in which the
distance between the two supporting lines should be measured.
If the lines are parallel, n(t) = 0. In the case of non-parallel
lines, our distance function f(t) equals s(t)n(t)·(c(t)−a(t)),
where s(t) = 1

∥n(t)∥2
. If we drop the normalization of f(t),

its roots will not be altered. Let f(t) be n(t) · (c(t)− a(t)).
The time-derivatives of f(t) are given in Appendix C.

Next, we can pose the question; “How would ΓEE : IR 7→
B look like?”. For each edge, we have two vertices dependent
on a time-interval. With interval-arithmetic, these vertices are
represented as axis-aligned bounding boxes.

Each of these bounding boxes has a width (w), a height (h)
and a depth (d). Using the Pythagorean theorem it is possible
to compute a radius for a bounding sphere:

√
w2+h2+d2

4 . An
edge can be seen as the convex-hull spawned by two of these
bounding spheres. The ΓEE function is only used to prune
roots. Because we are dealing with roots, we may assume the
lines extending the edges are intersecting. The problem thus
exists within a plane spawned by the two intersecting lines.
We can thus make a 2D-projection of the 3D-edge-edge scene.
In case the capsules are non-parallel, the axis of the plane is
defined by (b′−a′)× (d′−c′), where the primed-vectors are
the origins of the associated spheres. If the edges are parallel,
the axis is defined by: (c′ − a′)× (d′ − a′). See figure 3

rA;1

rA;2

rB;1

rB;2

a
0

b
0

d
0

c
0

Fig. 3: Two 3D-capsules are projected on the plane. The cross
product of the length axis of both capsules is orthogonal to
the projection plane.

The eventual test is just a rectangle/rectangle-intersection
test. A rectangle/rectangle test is conceptually identical to the
convex polygon/convex polygon test described in [5].

D. Sphere/sphere test

As mentioned before, we can use spheres as bounding vol-
umes. Because we are in possession of a minimal-enclosing-
sphere algorithm [4] [11], instead of colliding the geometry
inside a sphere, we can test two bounding spheres for inter-
section first.

Let there be two spheres, sphere A and sphere B. Let a(t) ∈
R3 be the origin of sphere A and let b(t) ∈ R3 be the origin
of sphere B. The radii of the two spheres are denoted by rA
and rB .

When the distance between the origins is equal to the sum of
the radii, then surfaces of the spheres are touching each-other.
To be explicit, let γ(t) be b(t)− a(t). If ∥γ(t)∥2 = rA + rB
then the surfaces of the spheres are touching.

Because ∥γ(t)∥2 is defined as
√
γ(t) · γ(t), the derivatives

are somewhat harder to derive. However, by squaring the
formula we do get something that is usable:
∥γ(t)∥22 = (rA + rB)

2

∥γ(t)∥22 − (rA + rB)
2 = 0.

Let us define the expression above as f(t). When f(t) = 0,
the surfaces of the spheres are touching. We need to find (a
lower bound of) the first occurrence of t such that f(t) = 0:

f(t) = γ(t) · γ(t)− (rA + rB)
2. (1)

The time-derivatives of f(t) are listed in Appendix B.
During benchmarking, it has been shown that the com-

putational cost of evaluating f , [f0, f1], f ′ and [f ′′
0 , f

′′
1 ] is

high. To minimize the number of evaluations, the number of
iterations used is just one. In order to maximize bounding
quality of the inclusion function, the time domain is shortened.
Collisions within D2M are computed over an arbitrary time-
domain. Some authors always use the time-domain [0, 1].
By subdividing the time-domain of the entire-collision even
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further, the bounding quality of our parabolas increases. The
latter may cause scaling the number of subdivisions of our
time-domain to have an unexpected positive effect on the total
computation time of the collision.

Thus, by decreasing the time-span, and thus searching a
domain in more steps, the performance is actually increased,
because the bounding quality of each segment is sufficiently
increased. However, there does seem to be some optimum
between time-span and bounding-quality.

A sphere/sphere test using a single iteration is a continuous
broad-phase collision detection primitive. A swept-volume
axis-aligned bounding-box is computed using interval arith-
metic for each sphere. This bounding-box, together with single
iteration data is stored for each sphere. The swept-volume
bounding-boxes supply quick but inaccurate non-intersection
tests. If they indicate possible intersection, then a quick single
iteration sphere/sphere test is done. The sphere/sphere tests are
not the bottleneck. The computation of sphere associated data
is.

With sphere associated data, we mean the origin of a sphere,
at the beginning of the trajectory as well as the interval-origin
during the entire trajectory.

The following properties of a Sphere-Over-Domain object
are maintained.

• xt,0, the origin of the sphere at t = 0
• xt,domain, wherever the origin can be during the time-

domain
• ẋt,0, the velocity of the sphere at t = 0
• ẋt,domain, any velocity the sphere can reach during the

time-domain
• ẍt,domain, any acceleration the sphere can reach during

the time-domain
• r, the radius of the sphere
• BB, a bounding-box bounding the space where the

sphere can go during the time-domain
In Algorithm 5, a domain of intersection is computed. This

domain can be the empty set (∅, i.e. no collision).

V. ENSURE DISJOINTNESS, TAKE A STEP BACK

A problem with these kind of systems is that the objects are
not disjoint at the moment of collision. The earliest interval
that gets reported represents a touching collision, which is
not what we want. If we pick the beginning of the interval
returned, we still do not get a collision where both objects
are strictly disjoint. The latter is due to arithmetical error.
Systems like C2A, do not have this problem. Because the C2A
method relies on distance queries, it is possible to ensure that
a minimal distance is maintained between the objects.

An unrefined method to get disjoint objects with high
probability is to decrement the TOC with some small constant,
and then clamp the value to the non-negative domain. When
using this construct, as the collision speeds increases, so does
the distance between the objects at the time of collision. This
effect is unwanted, and can easily be compensated. At the time
of the raw collision, a contact-normal exists pointing from
object A to object B. We can measure the impact velocity
along the contact normal (vn̂). Additionally, we can specify a

Algorithm: TSP
input : An interval: [t0, t1] ∈ IR

ASOD, BSOD

output: An interval describing an overlap period
(optional):[r0, r1] ∈ IR ∪ ∅

1 if ¬ASOD.BB.intersects(BSOD.BB) then return ∅;
2 γt,0 ← BSOD.xt,0 −ASOD.xt,0;
3 γ̇t,0 ← BSOD.ẋt,0 −ASOD.ẋt,0;
4 γt,domain ← BSOD.xt,domain −ASOD.xt,domain;
5 γ̇t,domain ← BSOD.ẋt,domain −ASOD.ẋt,domain;
6 γ̈t,domain ← BSOD.ẍt,domain −ASOD.ẍt,domain;
7 st,0 ← ∥γt,0∥22 − (ASOD.r +BSOD.r)2;
8 ṡt,0 ← 2(γt,0 · γ̇t,0);
9 s̈t,domain ← 2(γ̈t,domain · γt,domain + ∥γ̇t,domain∥22);

10 I ← θ(st,0, ṡt,0,
s̈t,domain

2 , [t0, t1]) ;
11 l, u← I.computeLowerRoots([t0, t1]);
12 r ← [t0, t1];
13 if st,0 > 0 then
14 if l ∈ R then
15 r ← r ∩ [l,∞];
16 if u ∈ R then r ← r ∩ [−∞, u];
17 else
18 return ∅;
19 else
20 if l ∈ R ∧ u /∈ R then r ← r ∩ [−∞, l];
21 return r;
Algorithm 5: Test-Sphere-Pair. The function computes the
time-overlap-interval of two moving spheres. The interval
is conservative, e.g. the case st,0 ≤ 0 could yield two
intervals. In such a case, an intermediate non-intersection is
reported as intersection. In line 10 the inclusion function is
constructed. The math above line 10 is derived in Appendix
B. Function computeLowerRoots : IR 7→ (R ∪ ∞)2

operates on an inclusion-function and computes the roots
of the lower-parabola within the given domain. The roots
are returned in sorted order.

distance epsilon (ϵd), which represents the amount we wish
the objects to be disjoint. We get the following equation
∆TOC · vn̂ = ϵd. We can rewrite this into ∆TOC = ϵd

vn̂
.

Hence we have to decrement the TOC with ∆TOC and clamp
it to the non-negative domain.

The construct above works well when ϵd is set to the same
order as the precision of the root finder. Note that the root
finder precision is described in time units (ϵt). When the
distance epsilon of is set to 10−10, the distance that is reported
by the PQP library is in between 1.0× 10−10 ∼ 3.3× 10−10.

VI. OPTIMIZING THE SYSTEM

Within the context of this project, a bounding-volume-
hierarchy has been used. This bounding-volume-hierarchy is
briefly described in Section VI-A. For any simulation system
containing many objects to be useful, one needs a method
to counter-act the quadratic complexity that arises between
multiple objects. In [17], one can find variations of the
Sweep and Prune algorithm, which reduces the computational
complexity of a many-body-simulation.
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What has not been solved with satisfaction is resting contact.
Within C2A, a heuristic is used to avoid recomputing similar
collisions. A similar construct can be used with D2M (non-
capoeira) to reduce computations. Whenever two objects are
colliding, it is likely that they will collide again at similar
spots. By caching the most recently collided leaf-leaf pair of
an object pair that collided, the next collision query can be
accelerated.

By merely computing the TOC of the geometry within the
two cached leaves, if there is a collision, between these subsets
of geometry we can infer that there must be a collision between
both objects in full.

In the case of a collision of subsets of the geometry, we only
have to search the time-domain before the occurrence of such
a collision. This will most likely reduce the total computation
time.

If the subsets of the geometry did not collide, we have
to test the geometry in full. In this case, there is a slight
computational overhead.

The above heuristic only works well for D2M (non-
capoeira). In capoeira-mode, there seem to be anomalies that
conflict with this approach. Strictly, the geometry in capoeira-
mode does not converge to the actual shape of the object.
Therefore it is also debatable if capoeira-mode can be called
“truly continuous”.

A. Our BVH method

An example of our bounding-volume-hierarchy class is
shown in Figure 4. The class can be called an augmented
R-tree.

The tree is built recursively by choosing an axis-aligned
plane to subdivide a beam volume. The subdivided beam-
volume contains two parts of geometry, either empty or non-
empty. A minimal axis-aligned bounding-box is fitted around
the geometry in case the geometry exists and subdivision is
done again until a rib of the beam reaches a certain minimum
length (ϵ).

For the subdivision-plane, we simply pick the broadest
dimension of the beam and select the middle.

A C.C.D. collision query function takes two of these
bounding-volume-hierarchies (Anode and Bnode), see Algo-
rithm 6.

The function TestSpherePair(p,m1,m2) within Algorithm
6 tests two spheres having motions (m1,m2) for intersection
according to Section IV-D. Note that the parameters of this
function are different from the parameters in Section IV-D.
These parameters can easily be converted.

Algorithm 6 has some floating-point arithmetical precision
issues. These can be overcome in practice by keeping the
floating-point numbers as close to zero as possible. At the start
of the function, we can define epoch← t0. We can integrate
the motions Amotion and Bmotion in time such that their
t = 0 also corresponds to epoch. Also, we can determine
an approximate centroid of the scene at the beginning of the
function and translate the entire scene such that the magnitudes
of our numbers become smaller. Afterwards, if we decide to
return contact-point data, we have to translate back again.

Fig. 4: A bounding-volume-hierarchy of a 2D car-like object.
Note that the the subdivision process creates small beams
(rectangles in the picture). The geometry within these beams
or rectangles is used to construct minimum enclosing disks/-
spheres. This process yields a very efficient BVH.

VII. DISCUSSION

• For simulation purposes, when a collision has occurred,
one may wish to alter the rotational and translational
velocities of the objects. The latter can be done by
applying bi-directional impulses on the contact points that
are approximately shared by two objects.

– We use a flawed method based on the Projected
Gauss-Seidel method to accomplish this.

– In case of severe dis-function, causing penetration, a
hack is applied to prevent this.

– Using impulse reactions is hard, because the contact
times can be distributed in an insane manner.

– Our simulator allows for at most 128 collision-
events per frame (at 64 FPS). If more collision-events
occur, the simulation time is skewed. A speed of 64
FPS is usually maintained in Capoeira mode. Even
when three objects collide simultaneously (in resting
contact), the frame-rate is still acceptable.

– Resting contact could result in a low frame-rate.
• Next to impulse reactions, reaction forces can also be

applied to make it realistic.
– A method called Iterative Dynamics by Erin Catto,

has partially been used to accomplish this.
Originally, the method of Catto is used for perme-
able Rigid bodies. Impulses do not exist, because
everything is handled by forces. The main thing to
gain by using Catto’s method is normal-force that
counter-acts, gravity and external force.

• Performance
– A collision must be resolved by a single thread.



JOURNAL OF *****, VOL. ***, NO. **, JUNE 2010 8

Algorithm: Traverse− Tree− Pair

input : An interval: [t0, t1] ∈ IR
A node of each tree: Anode, Bnode

The motions of each object: Amotion, Bmotion

output: TOC ∈ [t0, t1] ∪∞
1 pairList← [ ];
2 if IsLeaf (Anode) ∧ IsLeaf (Bnode) then
3 /* Brute force the

collision-geometry of Anode and
Bnode. Return the TOC or ∞. In
Capoeira mode, we return t0. */

4 return the above ;
5 else
6 for all parts a of Anode do
7 for all parts b of Bnode do
8 Add(pairList, (a, b)) ;
9 /* N.B. In case a node is a leaf,

it has only one part namely
itself. Otherwise, its parts are
its children. */

10 modifiedPairList← [ ] ;
11 foreach p in pairList do
12 test← TestSpherePair(p, Amotion, Bmotion) ;
13 if test ̸= ∅ then

Add(modifiedPairList, (test,p));
14 /* Sort on lower time bound

(ascending). */
15 Sort(modifiedPairList);
16 TOC ←∞;
17 TOC1 ← t1;
18 foreach modifiedPair in modifiedPairList

do
19 TOC1 ← min{TOC, TOC1};
20 TOC2 ← min{TOC1,modifiedPair1,1};
21 if modifiedPair1,0 ≤ TOC2 then
22 TOC3 ← Traverse − Tree − Pair
23 ( [modifiedPair1,0, TOC2],
24 modifiedPair2,1,modifiedPair2,2,
25 Amotion, Bmotion);
26 TOC ← min{TOC, TOC3};
27 return TOC;

Algorithm 6: Query the TOC.

– Distributing the C.C.D. problem over multiple
threads fails using either p-threads or OpenMP,
CUDA® and OpenCL have not been attempted.

– All results are processed by a single thread of an
Intel® Core™ i7-6700K CPU @ 4.00GHz × 8.

VIII. RESULTS

Exhaustive benchmarks have been performed on pairs of
objects (see Figure 5). Each set of models sized 2 is tested
in 4 different ways: D2M versus C2A low speed (4 units
per second), D2M Capoeira versus C2A low speed, D2M
versus C2A high speed (512 units per second) and D2M
Capoeira versus C2A high speed. Note that with this con-
struct, C2A benchmarks are done twice. The double data-set

Tetrahedron (T) Bunny (BN)

Dragon (D) Buddha (B)

69,664 triangles4 triangles

100,000 triangles 99,732 triangles

Fig. 5: Experiment Setup (10 combinations)

serves as a sanity check, measuring timings twice should not
cause too much deviation. After discarding one of the C2A
datasets, each method is tested 5120 times ((speeds = 2)×
(experiments = 10) × (pseudo-random-trials =
256)).

In Figure 6, an aggregation of all the distances at the
collision instance for each benchmark is shown. Note that there
are 40 benchmarks. Each benchmark is either D2M versus
C2A or D2M Capoeira verus C2A.

The bar in the middle of the box-plot indicates the median.
The dots indicate the mean values. The box extents indicate
the lower/upper- quartile, whereas the upper and lower whisker
indicate the minima and maxima.

Both diagrams have a logarithmic scale. The precision of
D2M is quite exceptional. The non-penetration property of
C2A does not always hold according to the second box and
whisker plot. C2A fails in 9 of the 5120 test cases. The
accuracy of D2M Capoeira is the poorest.

With D2M you get a contact distance of 1.0 × 10−10 ∼
3.3×10−10, whereas the distance obtained with C2A is within
the range 0 ∼ 5.1× 10−2. It can be stated that the quality of
computation of D2M is better than the computation quality
of C2A. A property of C2A, is that when the motion span
increases, the minimal separation distance at the collision also
increases. In [16], they seem to be using a fixed amount of
effort in order to compute a single collision. In comparison,
D2M takes as much processing power it takes in order to
achieve its goal of “sub-nanometer” precision.

When collisions are scaled in such a way that the accuracy
of D2M Capoeira matches that of C2A, i.e. when the relative
velocity between the objects is 512 units per second, D2M
Capoeria requires the least computational effort. This suggests
that D2M Capoeira is well suited for low-accuracy, high-speed
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Fig. 7: Overall aggregated timings.

continuous-collision-detection. For more statistics on D2M,
C2A and D2M Capoeira, see Appendix E.

IX. CONCLUSION

D2M is very precise, D2M Capoeria is imprecise but
requires little computational effort. The C2A method is ap-
proached from two sides, D2M wins in precision, and D2M
Capoeira wins when considering computational effort. With
D2M or D2M Capoeira, it is possible to construct an impulse
based simulation, possibly augmented with the force model
found in [2]. We succeeded in doing so, however discussing
continuous simulation is outside the scope of this paper.

Our system seems to be suited for real-time interactive
simulation. However, we would advise caution to integrate
D2M into time-critical applications. Our current simulation
implementation sometimes suffers from in-acceptable time lag.
You do not want your game-, simulation-, or (autonomous-
)vehicle- system to wait for a certain amount of time. For
any serious, time-critical applications, a fall-back mechanism
is required.

X. FUTURE WORK

By considering early works in continuous simulation and
re-evaluating them, there may be something to gain in this
field. Our current simulator waists computation cycles simply
by enforcing resting contact. A smart system would identify
resting contact and enforce it without trying to resolve tiny

bounces between models. The way the computations are opti-
mized now, is non ideal for certain types of simulations. Our
system heavily relies on interval-arithmetic. The C.C.D. prob-
lem is solved in [1] without the usage of interval-arithmetic
(with only a slight modification to the motion-definition).
Because (our implementation of) interval-arithmetic relies on
conditional-jumps and because conditional-jumps are handled
in a non-optimal manner by modern processors, our system has
a disadvantage. It might be a good idea to construct another
C.C.D. system based upon [1].

APPENDIX A
THE 3D CASE

ṗ(t) = ω × r(t) + v. (2)

The first derivative of a point is basically known (see
Equation 2). The second derivative can be found by using
the following identity:

d

dt
(a× b) = ȧ× b+ a× ḃ. (3)

One may observe that certain terms vanish. This has to do
with the assumption that the motion is of the type “linear
translational and linear rotational motion”. Applying d

dt on
equation 2, yields:

p̈(t) = ω × (ω × r(t)). (4)

APPENDIX B
THE SIGNED DISTANCE BETWEEN TWO SPHERES

Let there be two spheres, sphere A and sphere B. Let a(t) ∈
R3 be the origin of sphere A and let b(t) ∈ R3 be the origin
of sphere B. The radii of the two spheres are denoted by rA
and rB .

When the distance between the origins is equal to the sum of
the radii, then surfaces of the spheres are touching each-other.
To be explicit, let γ(t) be b(t)− a(t). If ∥γ(t)∥2 = rA + rB
then the surfaces of the spheres are touching.

Because ∥γ(t)∥2 is defined as
√
γ(t) · γ(t), the derivatives

are somewhat harder to derive. However, by squaring the
formula we do get something that is usable:
∥γ(t)∥22 = (rA + rB)

2.
∥γ(t)∥22 − (rA + rB)

2 = 0.

Let us define the expression above as s(t). When s(t) = 0,
the surfaces of the spheres are touching. We only need to find
the first occurrence of t such that s(t) = 0:

s(t) = γ(t) · γ(t)− (rA + rB)
2. (5)

Again we derive:

ṡ(t) = 2γ̇(t) · γ(t). (6)

and

s̈(t) = 2 (γ̈(t) · γ(t) + γ̇(t) · γ̇(t)) . (7)



JOURNAL OF *****, VOL. ***, NO. **, JUNE 2010 10

APPENDIX C
TWO LINES (IN 3D)

Let there be 4 points in world-space: a(t), b(t), c(t) and
d(t), and let (a(t), b(t)) and (c(t),d(t)) define ℓ1 and ℓ2
respectively. Let δ1(t) be b(t)−a(t) and let δ2(t) be d(t)−
c(t). Let n(t) = δ1(t)× δ2(t), be the direction in which the
distance between the lines segments should be measured. The
function f(t) in Section IV-C is defined below as s(t).

s(t) = n(t) · γ(t). (8)

Where γ(t) = c(t)− a(t). We can apply d
dt on s(t):

ṡ(t) = ṅ(t) · γ(t) + n(t) · γ̇(t). (9)

Let us now derive ṅ(t):
ṅ(t) = d

dt (δ1(t)× δ2(t)).

ṅ(t) = δ̇1(t)× δ2(t) + δ1(t)× δ̇2(t). (10)

It is of course also required to state δ̇1(t), δ̇2(t) and γ̇(t):

δ̇1(t) = ḃ(t)− ȧ(t). (11)
δ̇2(t) = ḋ(t)− ċ(t). (12)
γ̇(t) = ċ(t)− ȧ(t). (13)

Applying d
dt on equation 9 yields:

s̈(t) = d
dt (ṅ(t) · γ(t)) +

d
dt (n(t) · γ̇(t)) .

s̈(t) = n̈(t) ·γ(t)+ ṅ(t) · γ̇(t)+ ṅ(t) · γ̇(t)+n(t) ·
γ̈(t).

s̈(t) = n̈(t) · γ(t) + 2ṅ(t) · γ̇(t) + n(t) · γ̈(t). (14)

Where n̈(t) is derived as follows:

n̈(t) = d
dt

(
δ̇1(t)× δ2(t) + δ1(t)× δ̇2(t)

)
.

n̈(t) = d
dt

(
δ̇1(t)× δ2(t)

)
+ d

dt

(
δ1(t)× δ̇2(t)

)
.

Resulting in:

n̈(t) = δ̈1(t)× δ2(t)+ 2δ̇1(t)× δ̇2(t)+ δ1(t)× δ̈2(t). (15)

For completeness, it is also required to mention γ̈(t), δ̈1(t)
and δ̈2(t):

γ̈(t) = c̈(t)− ä(t). (16)
δ̈1(t) = b̈(t)− ä(t). (17)
δ̈2(t) = d̈(t)− c̈(t). (18)

APPENDIX D
POINT-PLANE DISTANCE

Suppose that we are interested in the distance between a
plane and a point. The distance between a plane and a point
can be found by sampling three points, one in A-space, and
two in B-space.

Let point a be our point in A-space. Let b be a point on
the plane in B-space, and let c be a point in front of the
plane, i.e. c = b + n̂, where n̂ is the normal of the plane.

Now that we have defined a, b and c in their local spaces, let
us consider these same points, but now they are transformed
to world space. Note that now, these three points are time
dependent.

We can now easily compute the distance between point a(t)
and the plane in world-space:

s(t) = γ(t) · n̂(t). (19)

Where γ(t) = a(t)− b(t) and n̂(t) = c(t)− b(t). Applying
d
dt on equation 19, yields:

ṡ(t) = d
dt (γ(t) · n̂(t)).

ṡ(t) = γ̇(t) · n̂(t) + γ(t) · ṅ(t). (20)

Were γ̇(t) = ȧ(t)− ḃ(t) and ṅ(t) = ċ(t)− ḃ(t).
Now, we take the derivative once more:
s̈(t) = d

dt (γ̇(t) · n̂(t) + γ(t) · ṅ(t)) .
s̈(t) = d

dt (γ̇(t) · n̂(t)) +
d
dt (γ(t) · ṅ(t)) .

Resulting in:

s̈(t) = γ̈(t) · n̂(t) + 2γ̇(t) · ṅ(t) + γ(t) · n̈(t). (21)

Were γ̈(t) = ä(t)− b̈(t) and n̈(t) = c̈(t)− b̈(t).

APPENDIX E
ELABORATE TEST RESULTS

See Figures 8, 9, 10 and 11.
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